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1. Introduction

An actuator is a type of device that is operated by a source 
of energy and converts that energy into motion and/ or force 
in a controllable and preferably, in a reversible way. At the 
micro-scale, actuators have been extensively investigated and 
are part of a sub-class of micro-electro-mechanical systems 
(MEMS). Micro-actuators are ubiquitous and find applica-
tions in various fields as diverse as micro/ nano manipulation, 
precise and fast speed positioning as well as dynamic motion 
control. Reviews of micro-actuation principles can be found 
for instance in [1, 2].

However and essentially due to the lack of suitable man-
ufacturing processes, micro-actuators remain essentially 
planar devices; furthermore, they often require cumbersome 
fabrication process involving multiple steps that reduce their 

integration potential into more compact and more cost-effec-
tive ensemble.

In optomechanics, the number of actuation principles suit-
able for optical devices in the visible ranges remains limited. 
Nonetheless, they are of high interest for various optical 
applications like optical microscopy, tunable optical devices 
for waveguide coupling, near-field probes as well as adaptive 
optics for high-power lasers. As an attempt to fill some of these 
gaps, actuation principles for instance based on electrowetting 
[3], magnetofluidic actuation [4] as well as transparent elec-
trostatic actuation [5] have been proposed. However, a simple, 
generic actuation principle, with yet three-dimensional (3D) 
capabilities is still missing.

To advance the field of actuators suitable for optics 
operating in the visible ranges, here, we investigate a mon-
olithic transparent 3D actuator fabricated by non-ablative 
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femtosecond laser and chemical etching that uses dielectro-
phoresis force as actuation principle.

Femtosecond laser micro-machining and subsequent chem-
ical etching, using potassium hydroxide (KOH) or hydrogen 
fluoride (HF), has emerged as a promising method to fabricate 
monolithic and 3D devices that combine multiple functions, 
like optical, fluidic, mechanical and optical functions. The 
processing consists of using laser emitting ultrashort pulses to 
locally tailor material properties so that laser exposure areas can 
be either etched away or modified with sub-wavelength spatial 
resolutions to acquire specific physical properties that were no 
present at first. Thanks to the nonlinear absorption phenomena 
taking place during laser exposure, a unique characteristic of 
this process is the possibility to modify material properties in 
the 3D and in particular below the material surface.

Dielectrophoresis or ‘DEP’, first termed by Pohl [6] in the
early 1950s, is defined as the electrostatic action on dielec-
trics, due to an induced dipole moment under a non-uniform 
electric field. As an actuation method, the most common 
application is to manipulate and to sort micro-particles [7]. 
Recently, this realm has been extended to optomechanics ena-
bling nano-mechanical functionality inside optical fiber [8] as 
well as nano-beam actuation [9].

A roadblock to DEP implementation is the need for non-
trivial shapes, eventually 3D ones, that makes it difficult to 
manufacture with conventional techniques. Benefitting from 
3D manufacturing capability of femtosecond laser, here we 
demonstrate a monolithic DEP actuator that we characterize 
analytically and experimentally.

2. Working principle, fabrication and modeling

2.1.  Working principle

As a proof-of-concept, we investigate a cantilever moving in a 
non-uniform electrostatic field created by a V-shape arrange-
ment of electrodes. This concept is inspired from R. Jebens 
and co-workers [10] who suggested this idea for positioning 
an optical fiber. Here, we generalize the concept proposed 
conceptually by Jebens and further demonstrate it on a mono-
lithic design, theoretically and experimentally.

The working principle is briefly outlined in figure 1. When 
an external driving voltage is applied on both sides of the 
V-shape groove, a non-uniform electric field rises as indicated 
by the field lines in figure 1(b). The presence of the electrostatic 
field causes the appearance of an effective dipole moment in 
the cantilever. Since the electrostatic field is non-uniform, a 

net force appears distributed along the cantilever causing the 
slim structure to bend.

2.2.  Fabrication

The actuator includes a cantilever with a high aspect ratio of 
1 : 300 symmetrically located in a V-shape groove fabricated 
out of a single piece of fused silica by femtosecond laser irra-
diation with subsequent HF etching illustrated in figure 2.

An overview of the fabrication processing is as followed. 
Laser exposure is provided by an ytterbium-fiber amplifier 
laser with pulse duration of 270 fs. The laser emits pulses 
of 230 nJ at a frequency of 800 kHz, corresponding to an 
average power of 184 mW. The laser beam is focused down to 
a beam waist about 1.5 μm using an objective with an effec-
tive numerical aperture of 0.4. The substrate is a 500 μm-thick 
fused silica (a-SiO2). The specimen is loaded onto a dual axes 
motorized stage which enables plane motion, whereas the laser 
focal spot is translated by a Z-axis stage. Those three axes can 
achieve synchronized motion, thus achieving 3D-scanning of 
the laser focal point. Following the laser modification step, the 
specimen is immersed into a 2.5% concentration HF bath for 
pattern etching while keeping low tapered profile.

After etching, a cantilever of a length of 13 mm with a typ-
ical cross section of 90 μm  ×  30 μm is well attainable.

Both sides of the V-shape groove are coated with con-
ductive layer, e.g. gold or indium tin oxide (ITO) for high 
transparency purpose, serving as electrodes. Before depos-
iting the conductive layers, the machined pattern is partly 
covered by a masking tape. The mask is carefully designed to 
prevent bridging both sides of the V-shape groove and to insu-
late electrically the cantilever from either side of the groove.

2.3.  Analytical model: force induced by the 
non-homogeneous electrostatic field

Effective dipole moment theory is adopted to determine the 
DEP force [11]. Its general governing expression on dielec-
trics in a non-uniform electric field is:

( )ε= ∇
→ → →
F C K EReV m

2� (1)

where CV denotes the volume of object to be manipulated; 
εm the permittivity of medium; Re(K) the real part of the 
Clausius–Mossotti factor K and E the applied electric field.
For non-spherical object, the resultant average dipole orienta-
tion needs to be considered by introducing a form factor B in 
the classical expression of the Clausius-Mossotti factor [12].

( )
ε ε

ε ε ε
=

−

+ −

∗ ∗

∗ ∗ ∗K
B2

p m

m p m
(2)

where complex permittivity ε* = ε  −  j σ/ω. ε and σ denote 
permittivity and conductivity, respectively. ω is the angular 
frequency of electric field. Subscripts m and p denote air 
medium and fused silica, respectively.

For an elongated cantilever with its long axis normal to the 
plane defined by the electric field and the field gradient direc-
tion, the factor B is expressed as:

Figure 1.  (a) 3D rendering of the V-shape groove and the cantilever. 
(b) Dielectrophoresis actuation of the cantilever.
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where l denotes the length which is normal to both elec-
tric field and field gradient; w is the width of the cantilever 
aligning with the electric field; b is the thickness parallel to 
the field gradient.

Generally, there is no explicit analytical solution for the 
gradient of an electric field, but in the particular case of 
V-shape boundary conditions in figure 3(b), it is given by [13]:

θ
∇ = →→ →

E
V

r
e

2
r

2
2

3 2
� (4)

where r is the distance between the cantilever center and the 
reference point defined in polar coordinate system with the 
reference point coincides with the virtual tip of the groove, θ 
is the opening angle of the V groove and V denotes the applied 
voltage. →er is a unit vector.

Three parameters as in figure 4(a) are defined from the man-
ufacturing point-of-view: the height h of the cantilever away 
from the bottom of the V groove, the smallest gap g between 
the two sides of the groove and the opening angle θ of the 
V-shape groove. Their relation is defined in equation (5) based 
on the assumption that the two electrodes are considered to be 
infinite planes. Considering the aspect ratio of the electrodes 
(15 mm  ×  0.7 mm), we can assume that this assumption is valid 
as a first order estimation and that fringe effects can be neglected.

As the chemical etching step can cause some deviations 
in the dimensions, parameters, measured after the fabrication 
process, are served as inputs for quantifying the force output.

( )
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θ∝ +

−
−F h

g

2 tan /2

3
2� (5)

From the modeling, it is shown that the vertical distance h 
is of critical importance for achieving maximum magnitude of 

force. It is preferred to be as small as possible before meeting 
the limitations set by the traveling range and the width of 
the cantilever. The DEP force dependency on parameter θ is 
highly nonlinear. As shown in figure 4(b), as the gap g is much 
smaller than h, the DEP force gains sensitivity to the change 
of the angle and the optimal angle defining maximum DEP 
force lies in very narrow range; when the gap g grows bigger 
than h, the DEP force can be slightly increased by enlarging 
the angle.

2.4.  Analytical model: mechanical stability of the 
cantilever-V-shape groove system

Pulling-in instability is a widely known limitation of electro-
static micro/ nano actuators due to an inherent nonlinearity 
of electromechanical coupling. Instability limits the traveling 

Figure 2.  Illustration of the two steps of femtosecond laser 
processing combined with chemical etching. (a) First, the material 
is modified by a tightly forced femtosecond laser emitting low 
energy pulse, no ablation takes place. (b) The second step is to 
immerse the substrate into preferential chemical etching and to 
reveal the patterns.

Figure 3.  (a) Scanning electron microscopy image (SEM) of the 
V-shape groove surfaces and the cantilever top surface.  
(b) Microscopy image of the cantilever tip.
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range and can cause the collapse of the devices. The DEP 
force is position dependent and varies as the cube of the 
reciprocal of the position of the cantilever defined in equa-
tion (4), while the spring restoring force increases linearly to 
the deflection. Like for classical electrostatic actuators, DEP 
actuators can also become unstable. Keeping the DEP actu-
ator in a stable regime is an essential condition for operating 
the device.

The linear stiffness along the motion axis and expressed 
at the tip of the cantilever for uniform transverse loading is 
given by:

=K
EI

l

8
stiff 3� (6)

where E is the Young’s modulus of fused silica, I is the area 
moment of inertia. From equations (1) and (4), the DEP force 
can be expressed as:

ε
θ
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→→
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where r0 and rx are the initial position and the deflection of the 
cantilever, respectively, the axes are as shown in figure 4(a). 
In mechanical equilibrium, the net force applied on the canti-
lever is zero, thus:

( ) ( )
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⋅→ =
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2
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The instability position can be found by taking the deriva-
tive of the total net force with respect to the deflection of the 
cantilever: ∂Σ ∂ =⃗F r/ 0x . Combining with equation  (8), 
we can solve analytically the instability parameters: the crit-
ical driving voltage Vpi before pulling in and the instability 
position rpi (here, the maximum deflection) expressed in equa-
tions (9) and (10).

=r
r

4
pi

0
� (9)

( )
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r K

C K

27

512 Repi
2 0

4 2
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V m
� (10)

Exploiting the analytical model we developed, the insta-
bility of V-shape DEP actuator is graphically presented. The 
mathematically positive solutions of the fourth order polyno-
mial in equation (8) are shown graphically in figure 5.

Out of the two mathematical solutions shown with a black 
dot and a hollow circle, only the smaller one shown with a 
black dot is physically existent (indicated by equation  (9)). 
When the driving voltage exceeds the critical value 142 V pre-
dicted by the modeling, stable positions will no longer exist 
and the cantilever can collapse to the V-shape boundaries or be 
dragged out of the V groove causing failures.

For the voltage-driven scheme of V-shape DEP actuators, 
the stable motion of the cantilever no longer exists beyond 
one fourth of r0. The initial position r0 needs to be increased 
in order to extend the traveling range, and as a consequence, 
higher driving voltage is required.

Compared with classical electrostatic actuators [14], which 
have a general form of the driving force ( )ε=F AV r/ 2elec 0

2 2

and a pulling in position at one third of the comb gap, we 
believe the dependency of the electrostatically driving force 
on the position limits the traveling range.

When the scale of the V-shape groove and the cantilever 
is changed isomorphically in the 3D, the relative influence of 
the DEP force and the mechanical force will be altered. The 

Figure 4.  (a) Diagram of design parameters of the V-shape groove. 
(b) Optimal angle range with respect to variable gap g for a fixed 
h. We define the optimal angle as the one resulting in an enhanced 
magnitude of DEP force.

Figure 5.  Plot of the DEP force and the mechanical restoring 
force. The intersections between them are the mechanical 
equilibrium positions. Bottom left intersections with black dots are 
mechanically stable equilibrium points whereas the top right points 
with hollow circles are instable and physically inexistent.
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gradient factor ∇
→ →

E2 has a scaling factor of l−3 in terms of 
dimension l, by noticing that it has a unit of V2/m3 [15]. Thus, 
the overall DEP force scales as l0, while maintaining the rela-
tive position of the cantilever with respect to the groove. On 
the other hand, the mechanical stiffness scales as l1. Scaling 
advantages of the DEP force over the mechanical restore force 
exhibits as the actuator shrinks to smaller size. A much lower 
voltage will be needed comparatively for achieving the same 
ratio of displacement versus size of the V-shape groove. The 
actuator becomes also more sensitive to voltage variations.

3. Experiments and characterization

Performance metrics of the DEP actuator are examined by 
measuring the deflection of the cantilever tip. The static and 
dynamic characteristics, including static force output, static 
deflection, dynamic resonance and step response are reported. 
Different prototypes are manufactured, so that the perfor-
mance falls within the average of different cases outlined in 
the previous paragraph.

3.1.  Experimental methods

A camera system is designed to measure the static deflection 
of the cantilever tip. A direct voltage (dc) power supply (SRS, 
Inc. PS300) is used to provide a dc source up to 200 V; a cali-
brated camera system (Thorlabs DCC1645C) with white light 
source is adopted for imaging and measuring the static motion 
of the cantilever tip.

Since this camera system is insufficient for high frequency 
measurement, another optical setup based on position sensing 
detector (PSD) (First Sensor DL16-7-PCBA3) is used to char-
acterize the dynamics of the actuator, illustrated in figure 6. 
Arbitrary wave output is generated by a function waveform 
generator (Agilent 33120A) and amplified by a constant gain 
high voltage amplifier (Falco Systems WMA-01) up to 120 V. 
A digital oscilloscope (Rigol DS1204B) is connected to the 
PSD for monitoring and recording the dynamic response of 
the actuator. To create a visible spot on the PSD, a Helium-
Neon (HeNe) laser is transmitted through an optical fiber 
which itself is constrained and guided by a trench whose 
width is about the diameter of a single mode fiber. Since the 
trench is monolithically fabricated with the actuator, which 
enables accurate alignment between the fiber and the canti-
lever, an effective butt coupling between them initiates the 
transmission of the laser beam through the cantilever. The 
cantilever acts as a multimode waveguide and the transmitted 
light is projected onto the PSD sensing area by alignment 
using micro-stages, shown in figure 7. All experiments are 
performed under atmospheric pressure at room temperature.

3.2.  Static response

The accuracy of the analytical model is tested by measuring 
the static deflection when an equilibrium position is reached. 
Figure 8 shows the measured and modeled deflections of the 
cantilever for various voltages. After applying a dc driving 

voltage, the cantilever shows stable deflection towards high 
electric field. The deflection direction is independent of the 
sign of the voltage. This is a logical result from equations (1) 
and (4): changing the sign will reverse the direction of the 
electric field but not the gradient of the field. The cantilever 
also exhibits nonlinear deflection, which results from the fact 
that the deflection is proportional to the square of the electric 

Figure 6.  PSD and an optical coupling setup for measurement of 
DEP dynamics.

Figure 7.  The cantilever motion is monitored by a PSD. This setup 
can also serve as a demonstrator for an optical coupler to fibers and 
an optical switch when electrically actuated. The top right image is 
the laser intensity distribution transmitted through a square cross 
section cantilever.

Figure 8.  Experimental results and theoretical analysis of the 
cantilever deflection under dc.
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field. Experimental results and modeling show a good agree-
ment. The variations between them can be caused by the first 
order approximation of the electric field magnitude and facts 
like the relatively low accuracy of the cantilever thickness. 
The calculated DEP force is in the order of a few μN mm−3 
on the cantilever.

The two measurements in figure 8 were conducted at dif-
ferent times. Since the relative permittivity of air medium is 
strongly dependent on the environmental humidity as are the 
resistivity and the relaxation of air [16], this effect influences 
the overall dipolar polarization process and induces variations 
in measurement.

Collapse or ‘dragged instability’ takes place when the 
driving voltage surpasses the critical value 150 V in experi-
ments. This critical voltage varies from case to case, highly 
depending on the design parameters.

3.3.  Dynamic response

The DEP force is proportional to the square of the applied 
voltage as shown in equations (1) and (4). Supposing both dc 
and ac voltage are supplied:

( )
( )

ω
ω

= +

= + + −

V V V

V V
V

V V t
V t

2
2 sin

cos 2

2

ac dc

2
dc
2 ac

2

dc ac
ac
2� (11)

Generally, the resulting force applied on the cantilever 
contains terms in both ( )ωtcos  and ( )ωtsin , and it leads to the 
vibration of the cantilever between the initial position and the 
maximum amplitude position near the bottom of the V-shape 
groove. When the ac component dominates, the cantilever 
can be driven at twice the frequency of the applied ac voltage 
[17]. A sinusoidal driven voltage at 10 Hz is used to excite the 
actuator, the response of the cantilever tip vibration at 20 Hz 
is shown in figure 9.

Resonance frequencies offer an insight into the mass, 
damping and stiffness properties. The vibration modes of 
the DEP actuator are tested by frequency sweeping method 
at moderate magnitude of the driving voltage. dc voltage is 
supplied to set bias and ac voltage superimposed onto dc is 
used to excite the resonances. To predict the appearance of 
resonances, classical Euler-Bernoulli model is adopted [18].

( ) ( ) ( )ρ
∂
∂

+
∂
∂

=EI
y x t

x
A

y x t

t
f x t

, ,
,

4

4

2

2
� (12)

where ( )y x t,  is the deflection from equilibrium axis in 
Cartesian coordinate, ρ is the density of fused silica, A denotes 
the area of cross section and ( )f x t,  denotes the applied trans-
verse force on per unit length of the cantilever. The natural 
resonance is expected to be at ( ) ( )ω ρ= l EI A1.875/ /0

2  with 
a second harmonic mode at about 6.2 ω0. Due to manufac-
turing and design variations, the cantilever is not exactly 
located symmetrically inside the V-shape groove. As a con-
sequence, a lateral force, tangent to the electric field lines can 
be present. First two resonances along both vertical and lateral 
directions are measured and shown in figure 10. The direction 
is the same as defined in figure 3(b).

As expected, the resonance along the vertical direction is 
stronger than that along the lateral direction. It can be explained 
by the fact that: first, rectangular cross section  results in a 
higher area moment of inertia along the lateral direction; and 
second, the net DEP force along the lateral direction caused 
by position variation of cantilever off the central line of the V 
groove is relatively small compared to the DEP force normal 
to the field lines.

The bandwidth of the primary resonance along the vertical 
direction is about 5 Hz, implying a weakly damped system. A 
comparison between modeling and experiment of resonances 
are shown in tables 1 and 2.

Within the possible measurement variations of the canti-
lever thickness affecting the modeled modes, there is a good 
agreement between the model and the experiment.

The time domain transient response is measured using 
impulse inputs and step inputs.

An impulse of 1 Hz is applied to study the damping of the 
cantilever. As shown in figure 11, the calculated exponential 
time constant is about 60 ms, hence the damping ratio is 0.013. 
The quality factor is evaluated to be about 40.

The step response is studied by applying a falling edge step 
input from 60 V to 0 V with comparison to the response by 
applying a rising edge step input from 0 V to 60 V.

We measure an averaged settling time of 2 ms and 200 ms 
for a rising edge input and a falling edge input, respectively 
(shown in figure 12). The rising edge response is much faster 
than the falling edge one.

One reason accounting for the faster rising edge response 
is the air damping [19]. As the cantilever oscillates, the non-
trivial air film between the V shape groove and the cantilever 
is squeezed and sheared causing a built-up force against the 
motion of the cantilever. Considering the significantly long 
air film along the cantilever, this air damping may become 
significant when the cantilever is closer to the groove walls as 
in the case of a rising edge stimulus.

The most possible reason is the ‘dynamic stiffness’ change 
after a rising edge input. Considering a second order mass-
damping-stiffness model for the dynamic system:

( )+ + =my y k y y¨ d ˙ 0� (13)

Figure 9.  Cantilever tip response to a 10 Hz excitation voltage.
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where m is the mass, d is the damping coefficient and k(y) is 
the spring. When applying a rising input from 0 V to 60 V, the 
consequent driving force proportional to the cube of the recip-
rocal of the position increases quickly in its magnitude as the 
cantilever reacts to move down. This effect adds nonlinearity 
to the stiffness and reduces the effective stiffness dynamically. 
As a consequence, the system is gradually damped eventually 
closing to critical damping, resulting in much faster settling 
time.

Fused silica has a high mechanical strength and a high 
quality factor [20], so it will naturally oscillate for longer time 
as indicated from figure 12(a). However, the damping, caused 
by dynamically loading of the cantilever, leads to the canti-
lever to settle quicker. It suggests that input shaping method 
[19] can be adopted to tune the settling time and the posi-
tioning speed for a desirable response; it also indicates that 
the working configuration of the actuator under tension is 
favorable.

4.  Conclusion

A monolithic 3D transparent micro-actuator is fabricated by 
femtosecond laser micromachining of fused silica and fully 
demonstrated.

Figure 10.  (a) and (b): First two resonances of the cantilever along 
the vertical direction. (c) and (d): First two resonances of cantilever 
along the lateral direction.

(a)

(b)

(c)

(d)

Table 1.  First four resonances along the vertical direction: 
modeling and measurement.

Vertical resonance frequency [Hz]
1st 
order

2nd 
order

3rd 
order

4th 
order

Modeling 202 1267 3549 6955
Experiment 200 1262 3525 6995

Table 2.  First two resonances along the lateral direction: modeling 
and measurement.

Lateral resonance frequency [Hz] 1st order 2nd order

Modeling 563 3528
Experiment 552 3494

Figure 11.  Impulse response at 1 Hz.

J. Micromech. Microeng. 25 (2015) 105009
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DEP actuation inherits the advantages of electrostatic 
actuation: high compactness, high simplicity and low power 
consumption. It is also capable of 2D or even 3D motion by 
proper arrangement of stationary electrodes and at the same 
time suppresses the need for electrodes on non-conductive, 
mobile components, which make it superior to traditional 
electrostatic actuations.

The high mechanical strength and high transparency of 
fused silica over a broad wavelength, as an added value, offer 
transparent DEP actuators high integration and multi-function 
potentials, promising in but not limited to adaptive optics and 
integrated optics.

On the other hand, for voltage-driven scheme of DEP actu-
ation, issues like low force output, limited traveling distance 
set by its inherent instability and scaling, may limit its imple-
mentation for various occasions but also inspire further efforts 
in improvements.

The DEP actuator reported here can be used for imple-
menting various functions such as optical switching and 
coupling [21]. Using femtosecond laser machining, DEP 
actuation schemes can further be monolithically integrated 
in photonics circuits [22–24] or in devices combining wave-
guides and fluidics channels [25, 26] as well as devices 
combining waveguides and other functional elements such as 

flexures [27], resonators [28] or other optical elements such as 
Fresnel lenses [29] and spherical lenses [30].
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